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A system of hydrodynamic equations in the presence of large-scale inhomogeneities for a high plasma beta
solar wind is derived. The theory is derived under the assumption of low turbulent Mach number and is
developed for the flows where the usual incompressible description is not satisfactory and a full compressible
treatment is too complex for any analytical studies. When the effects of compressibility are incorporated only
weakly, a new description, referred to as “nearly incompressible hydrodynamics,” is obtained. The nearly
incompressible theory, was originally applied to homogeneous flows. However, large-scale gradients in density,
pressure, temperature, etc., are typical in the solar wind and it was unclear how inhomogeneities would affect
the usual incompressible and nearly incompressible descriptions. In the homogeneous case, the lowest order
expansion of the fully compressible equations leads to the usual incompressible equations, followed at higher
orders by the nearly incompressible equations, as introduced by Zank and Matthaeus. With this work we show
that the inclusion of large-scale inhomogeneities �in this case time-independent and radially symmetric back-
ground solar wind� modifies the leading-order incompressible description of solar wind flow. We find, for
example, that the divergence of velocity fluctuations is nonsolenoidal and that density fluctuations can be
described to leading order as a passive scalar. Locally �for small lengthscales�, this system of equations
converges to the usual incompressible equations and we therefore use the term “locally incompressible” to
describe the equations. This term should be distinguished from the term “nearly incompressible,” which is
reserved for higher-order corrections. Furthermore, we find that density fluctuations scale with Mach number
linearly, in contrast to the original homogeneous nearly incompressible theory, in which density fluctuations
scale with the square of Mach number. Inhomogeneous nearly incompressible equations for higher order
fluctuation components are derived and it is shown that they converge to the usual homogeneous nearly
incompressible equations in the limit of no large-scale background. We use a time and length scale separation
procedure to obtain wave equations for the acoustic pressure and velocity perturbations propagating on fast-
time–short-wavelength scales. On these scales, the pseudosound relation, used to relate density and pressure
fluctuations, is also obtained. In both cases, the speed of propagation �sound speed� depends on background
variables and therefore varies spatially. For slow-time scales, a simple pseudosound relation cannot be obtained
and density and pressure fluctuations are implicitly related through a relation which can be solved only
numerically. Subject to some simplifications, a generalized inhomogeneous pseudosound relation is derived.
With this paper, we extend the theory of nearly incompressible hydrodynamics to flows, including the solar
wind, which include large-scale inhomogeneities �in this case radially symmetric and in equilibrium�.
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I. INTRODUCTION

Hydrodynamic and magnetohydrodynamic models are
widely used and applied in many areas of physics. Depend-
ing on the physical properties of the system, one often has to
decide on either an incompressible or a fully compressible
description. The incompressible description has proved use-
ful for those problems where the effects of low-frequency
turbulence are particularly important, and for which it is suf-
ficient to obtain the description of the system at the lowest
order or when computer resources are inadequate �e.g., high
Reynolds number simulations�. The fully compressible de-
scription is an exact description of the fluid, but it is often
too analytically and computationally arduous and an incom-
pressible description is chosen instead just for its mathemati-
cal tractability. This, however, sometimes oversimplifies the
problem and relationship to compressibility is lost. In many
cases �especially when the density fluctuations are small
compared to their mean density value� we would like not to

exclude the effects of compressibility completely, but admit
them only weakly. A theory where compressible effects are
incorporated only weakly was developed by Klainerman and
Majda �1,2�, Zank, Matthaeus, and Brown �3–6� and is usu-
ally referred as a “nearly incompressible theory.” The nearly
incompressible �NI� theory introduces a third possible de-
scription in addition to usual incompressible/compressible
choices and under some assumptions represents a bridge be-
tween these two formalisms, namely in the limit of low
Mach number, where the solutions of compressible and in-
compressible regimes converge.

An excellent example of a fully developed turbulent mag-
netohydrodynamical �MHD� fluid is the solar wind flow, and
models based on an incompressible MHD description have
traditionally been used for over 40 years. These models have
yielded considerable success in modeling and explaining
much observational data, such as, for instance, the
Kolmogorov-like power spectrum observed in magnetic field
fluctuations. Solar wind observations exhibit a Kolmogorov-
like spectrum for low-frequency velocity, and magnetic en-
ergy fluctuations, and the simplest explanation of the obser-
vations is based on incompressible MHD fluid theories
which assume isotropy and homogeneity of the flow �Kol-*Electronic address: peter.hunana@email.ucr.edu
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mogorov �7�, Kraichnan �8�, Lesieur �9�, Biskamp �10�, and
Oughton �11��. Rather remarkably, density fluctuations, both
observed in situ in the solar wind and by radiowave scintil-
lation measurements in the interplanetary medium �IPM� and
interstellar medium �ISM� also exhibit a Kolmogorov-like
spectrum �Armstrong et al. �12�, Matthaeus et al. �13��. An
explanation for the density fluctuation spectrum observed in
the ISM was based on an incompressible MHD fluid descrip-
tion �Montgomery et al. �14��, who suggested that density
fluctuations are proportional to pressure fluctuations ��p
=cs

2���, where the constant of proportionality is the square of
the sound speed. This is usually referred as a pseudosound
approximation. The relation was based on the assumption of
very large sound speeds �i.e., the incompressible regime� and
using an adiabatic equation of state �although the pressure
was determined by solving the incompressible MHD equa-
tions�, and a k−5/3 spectral law, resulted as a direct conse-
quence of assuming a k−5/3 magnetic energy spectrum. This
model can therefor explain the density fluctuations only in
the presence of magnetic fields and not in pure hydrody-
namic flows. According to measurements, the density fluc-
tuations deviate from its mean value by about 10% �Mat-
thaeus et al. �13�, Spangler �15��. This suggests that density
fluctuations in the interstellar medium and solar wind �SW�
are only weakly compressible, but sufficiently large enough,
that an incompressible description is inappropriate.

Isotropic homogeneous incompressible and compressible
turbulence models for the solar wind can be used as long as
there are no strong inhomogeneities present in the back-
ground flow. However, there are many cases, where large-
scale gradients in physical variables such as density, pres-
sure, velocity, and magnetic fields are present in the
background flow. These gradients can act as additional
sources of fluctuations and change the behavior of the system
dramatically. This can happen, for example, when character-
istic turbulent fluctuation lengthscales are comparable with
the gradients in the background flow �e.g., Zank �16��. Our
primary goal in this work is therefore to include large-scale
inhomogeneities to the theory of the turbulence of the solar
wind.

Bhattacharjee, Ng, and Spangler �17� developed a model
for weakly compressible MHD turbulence in the solar wind
in which they included spatial inhomogeneity in the back-
ground magnetic field, obtaining a reduced MHD model in-
volving eight scalar variables, described as a four-field
model. The basic variables were magnetic flux, vorticity,
pressure and parallel flow in the leading order weakly com-
pressible regime. This model is not as simple as reduced
MHD �developed by Rosenbluth et al. �18�, Strauss �19�, and
Zank and Matthaeus �6��, which is a two-field model. How-
ever, because of the greater generality associated with more
variables and mainly because of the inclusion of large scale
inhomogeneities, it seems to describe effects of higher order
and complexity in MHD turbulence of solar wind, which
were not possible to show by the simpler two-field reduced
MHD model. Inclusion of large-scale inhomogeneities there-
fore looks very promising and is a necessary step for the
correct description of the solar wind turbulence.

Nearly incompressible fluid theory, as developed by Zank,
Matthaeus, and Brown, is an appropriate model to describe

weakly compressible solar wind fluctuations. The theory was
developed primarily for spatial, homogeneous fluctuations in
the solar wind. However, as mentioned above, the solar wind
possesses large-scale background gradients and in order to
describe these fluctuations in a self consistent manner, it is
necessary to include large-scale background inhomogeneities
in the NI model. This modifies the nearly incompressible
description, introducing subtle nonlinear effects.

The nearly incompressible theory describes the expansion
of the fully compressible fluid equations �including MHD� in
terms of weaker fluctuations compared to the incompressible
background. The expansion parameter is essentially the tur-
bulent Mach number, and therefore NI theory primarily de-
scribes flows for which fluctuations are in low Mach number
regimes. In the expansion, the leading order background
terms satisfy the incompressible equations, while the higher
order fluctuations yield a weakly compressible set of equa-
tions. Zank and Matthaeus �4–6� derived an extensive theory
for nearly incompressible fluid dynamics and magnetohydro-
dynamics, including thermal conduction and a nonadiabatic
equation of state. The predictions of NI MHD were found to
hold for a rich variety of solar wind observations �Zank et al.
�20�, Matthaeus et al. �13�, and Klein et al. �21��. However,
NI theory has so far neglected the inclusion of large-scale
background inhomogeneities. Homogeneity in the NI theory
lead to the original Zank and Matthaeus prediction that pres-
sure and density fluctuations must be scale with the square of
the Mach number. This was a source of criticism for the NI
theory �Tu and Marsch �22� and Bavassano, Bruno, and
Klein �23��, since SW observations frequently suggested a
linear scaling with turbulent Mach number. As we show in
this paper, the inclusion of large-scale inhomogeneities ad-
dresses this criticism in the NI theory, and at the leading
order linear Mach number density fluctuations are present.

The hydrodynamical NI equations, without either large
scale inhomogeneities or viscous terms, were first given by
Klainerman and Majda �1,2�, who rigorously proved, using
functional analytic techniques and appropriate assumptions,
that the solutions of the NI equations converge to the solu-
tions of the standard incompressible equations as the sound
Mach number becomes small. Klainerman and Majda �here-
after referred to as KM� in these two papers proved several
theorems which are of great importance for hydrodynamics
and especially for nearly incompressible theory. We do not
reproduce their results here, but because these theorems rep-
resents the rigorous justification for nearly incompressible
theory we briefly summarize them. The theory was devel-
oped in the general framework of a quasilinear hyperbolic
system of partial differential equations, defined for the usual
x�RN or in the periodic case for simplicity on an
N-dimensional torus. Distances between functions are de-
fined by appropriate maximum norms on the square inte-
grable �L2� Sobolev spaces of order s, denoted by Hs �be-
cause for an appropriately defined norm, this space is a
Hilbert space�.

The first theorem addresses the uniform stability of com-
pressible solutions in the incompressible �low Mach number
M� limit and shows that with prescribed incompressible ini-
tial data, there exists a finite time interval T, independent of
M, such that a unique classical C1 solution �space of continu-
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ous functions with continuous first derivatives� of incom-
pressible fluid equations exists for all M→0 on the interval
�0,T�, and additional inequalities for the “closeness” of so-
lutions are also satisfied. The same results hold when small
fluctuations to the incompressible initial data are added. Af-
ter introducing the additional condition that the initial fluc-
tuations are of the order of Mach number O�M� for velocity
fluctuations and order Mach number squared O�M2� for pres-
sure fluctuations and, of course, assuming that both sets of
fluctuations are bounded, the theorem states that, on the same
time interval �0,T�, the velocity solution of the compressible
equations converges to the velocity solution of the incom-
pressible equations as M→0. This convergence is weak in
L� space �essentially bounded functions� and uniform in Cloc

1

space �locally C1�. KM also show that, when the initial data
for velocity and pressure fluctuations is more general, then as
M→0, the velocity solution of the compressible equations
still converges weakly in L� to some velocity ṽ, but, because
there is insufficient compactness in time in the limiting pro-
cess M→0, we cannot conclude that this ṽ is the solution of
the incompressible equations. The compactness in time is
recovered only when initial data for fluctuations scale with
Mach number as stated above. The first theorem was also
generalized to the Navier-Stokes equations where viscosity is
present.

The second theorem consists of three parts, and each part
assumes boundedness of the incompressible pressure to-
gether with its first derivative. In the first part, KM show the
long time existence for the first theorem, namely, that for
arbitrary long T0, there exists a sufficiently small Mach num-
ber M, that the first theorem is valid over the time interval
�0,T0�. In the second part, KM provide a justification for
linearized acoustics based on the nearly incompressible
equations, which contain first order corrections in pressure
and velocity. Finally in the third part, KM prove that for the
compressible equations there exists a complete convergent
expansion series in powers of small Mach number. This, to-
gether with other results of KM �24�, provides an important
proof that the ideas of nearly incompressible theory are
mathematically well defined and correct. A few related theo-
rems were also obtained for MHD, but we do not discuss
them here. Even though we do not develop our work in the
rigorous tradition of Klainerman and Majda, their results
provide a strong base for us to further generalize the nearly
incompressible theory by including other effects such as vis-
cosity, heat conduction, or magnetic fields, as was done by
Zank and Matthaeus �5,6�.

In this paper, we include a large-scale inhomogeneous
background to the nearly incompressible theory. The primary
application is assumed to be the solar wind flow, where the
background is considered to be radially symmetric and in
equilibrium �time independent�. We restrict our attention to
pure hydrodynamics, but the results are also valid without
any loss of generality to the high beta MHD regime. The
generalization to MHD, together with numerical simulations,
will be the subject of a subsequent paper. The general for-
malism and notation was developed by Zank and Matthaeus
�5�, and the present analysis is a direct extension of that
article.

To avoid later confusion, we should clearly emphasize the
distinction between the terms “locally incompressible” �LI�
and “nearly incompressible” �NI�, which are used throughout
the paper. Of course, for both the homogeneous and inhomo-
geneous cases, we assume that the density, pressure and ve-
locity variations are only small and that the expansion with
respect to the Mach number is mathematically justified. In
the homogeneous case, when the normalized compressible
equations are expanded, we obtain at the lowest-order the
usual incompressible equations. The set of equations ob-
tained at the lowest-order from the fully compressible equa-
tions is sometimes referred as the leading-order incompress-
ible description. Continuing to higher orders, we obtain the
“nearly incompressible” system of equations, as shown by
Zank and Matthaeus �5� and Klainerman and Majda �24�.
However, when large-scale inhomogeneities are correctly in-
cluded in the compressible equations and the appropriate ex-
pansion procedure is followed, we obtain at the lowest order
a system of equations that is not incompressible, but includes
small compressible effects �e.g., the divergence of the veloc-
ity is small, but nonzero; density variations are present�. Be-
cause the term “nearly incompressible” has been used for
many years and is reserved in the literature to describe
higher-order corrections to the core incompressible solutions,
we have chosen to describe the derived lowest-order inho-
mogeneous equations by the term “locally incompressible.”
This is motivated by the fact that, when a lengthscale sepa-
ration is introduced, we find that on small lengthscales �lo-
cally�, the system of locally incompressible equations con-
verges to the usual incompressible equations. In summary,
with the inclusion of large-scale inhomogeneities, the leading
order incompressible description is called locally incom-
pressible. For the higher-order inhomogeneous equations we
naturally use the term “inhomogeneous nearly incompress-
ible.”

The paper is organized as follows. The basic hydrody-
namical equations with the inclusion of large-scale inhomo-
geneities are presented in Sec. II, followed by their normal-
ization in Sec. III. Sec. IV introduces the locally
incompressible expansions together with time and wave-
length scale separation. In Sec. V, the higher-order inhomo-
geneous nearly incompressible equations are derived and
their physical meaning is discussed. Section VI derives a
generalized pseudosound relation. Finally, in Sec. VII, we
summarize our main results and in the Appendix, for conve-
nience, we present the non-normalized, incompressible, and
nearly incompressible inhomogeneous equations.

II. BASIC EQUATIONS

The hydrodynamic equations in the absence of viscosity,
heat conduction, sources/sinks and forces are as usual

��

�t
+ � · ��u� = 0, �1�

�
�u

�t
+ �u · �u = − �p , �2�
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�p

�t
+ u · �p + �p � · u = 0. �3�

The internal energy equation for an adiabatic �ideal fluid� is
of course equivalent to

p

p0
= � �

�0
��

. �4�

In applying Eqs. �1�–�4� to a large scale inhomogeneous flow
such as the solar wind, we assume that the background flow
is both spherically symmetric and time independent, i.e., that
�SW, uSW, and pSW depend only on the spatial spherical co-
ordinate r, with the usual definition of the spherical coordi-

nates �r̂ , �̂ , �̂�. So for example the velocity of solar wind is
uSW= �uSW,0 ,0�. Then, the steady-state background flow sat-
isfies

1

r2

�

�r
�r2�SWuSW� = 0, �5�

�SWuSW
�uSW

�r
= −

�pSW

�r
. �6�

Consider now fluctuations in the background spherically
symmetric solar wind, and regard the inhomogeneous back-
ground as the mean field. Since we made no assumptions
about the symmetry of the fluctuations, we express the fluc-
tuations in Cartesian coordinates. We use a mixed coordinate
system, where large scale solar wind variations depend only
on r and the small scale fluctuations on Cartesian coordi-
nates. The mean field expansion of the flow variables in the
presence of small scale SW fluctuations can be described as
follows:

u = uSW�r� + u��x,y,z,t� ,

� = �SW�r� + ���x,y,z,t� ,

p = pSW�r� + p��x,y,z,t� .

Equations �1�–�3� can then be expanded as

���

�t
+ �uSW + u�� · ��� + ��SW + ��� � · u�

= − u� · ��SW − �� � · uSW, �7�

��SW + ���
�u�

�t
+ ��SW + ���uSW · �u� + ��SW + ���u� · �u�

= − �p� − ��uSW · �uSW − ��SW + ���u� · �uSW, �8�

�p�

�t
+ uSW · �p� + u� · �p� + ��pSW + p�� � · u�

= − u� · �pSW − �p� � · uSW. �9�

Equations �7�–�9� describe the evolution of the small scale
fluctuating density, velocity, and pressure, respectively, in the
presence of a large scale static equilibrium background. The
background equilibrium flow is treated as nonevolutionary in

our treatment, and therefore does not self-consistently feed
back on the fluctuations. An active feedback of the large-
scale equilibrium on the small scale turbulence fluctuations
requires a completely self-consistent treatment, which is be-
yond the scope of our current analysis. Equations �7�–�9�
behave linearly when the background is much stronger than
the small-scale turbulence fluctuations. However, in the re-
gime where these fluctuations are comparable with the back-
ground flow amplitude, nonlinear interactions become im-
portant. The nonlinear solution of such a problem would then
be of importance to understand how turbulence is mediated
by large scale flows.

III. NORMALIZATIONS

Scintillation measurements of radio waves in ISM and
direct measurements in the SW show that typical density
fluctuations are of the order of 10% of the mean density field
�for example Matthaeus et al. �13� and Spangler �15��. To
develop the reduction to a leading-order incompressible de-
scription from Eqs. �7�–�9�, it is necessary to introduce ap-
propriate normalizations. Let �0 ,u0 , p0 be characteristic fixed
parameters for solar wind fluctuations. The normalized quan-
tities are written as

�̃SW =
�SW

�0
, ũSW =

uSW

u0
, p̃SW =

pSW

p0
,

�̃� =
��

�0
, ũ� =

u�

u0
, p̃� =

p�

p0
.

Furthermore, let R and L be typical lengthscales for the large
scale solar wind and the fluctuations, respectively, and intro-
duce the following normalizations:

x* =
x

L
, t* =

u0

L
t, r* =

r

R
,

�

�x
=

1

L

�

�x* → �x =
1

L
�x

*,

�

�r
=

1

R

�

�r* → �r =
1

R
�r

*,

�

�t
=

u0

L

�

�t* .

We introduce the dimensionless parameter �=L /R, which is
the ratio of characteristic small to large scale lengths. Typi-
cally, we can take for large-scale solar wind lengthscales R
=0.1–1 AU and for characteristic small-scale fluctuations we
can use the correlation length, which is typically L=0.01
AU, giving us at most �=0.1	1, and we will use this later.
We can rewrite the continuity Eq. �7� in the normalized form

��̃�

�t* + �ũSW + ũ�� · �x
*�̃� + ��̃SW + �̃���x

* · ũ�

= − �ũ� · �r
*�̃SW − ��̃��r

* · ũSW. �10�

The parameter � is of great importance, because it strongly
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couples the background equilibrium to the fluctuating com-
ponents and leads to strong nonlinear interactions between
the disparate lengthscales. On introducing the usual gas
Mach number Ms0 and gas sound speed cs0

Ms0 =
u0

cs0
, cs0

2 =
�p0

�0
, �11�

we introduce a new parameter 
2=
�0u0

2

p0
��Ms0

2 . Since the so-
lar wind is predominantly incompressible, the sound speed is
typically very large compared to the small-scale characteris-
tic velocity fluctuations. Thus, for typical SW parameters
u0	cs0. This consequently leads to a smaller turbulent Mach
number and hence 
, the smallness parameter, is much
smaller than the unity. The value of the ambient Mach num-
ber can be estimated from typical SW parameters. For in-
stance, the solar wind background flow, at nearly 1 AU, is
typically uSW=468 km/s, the sound speed defined as cs

2

=
�pSW

�SW
is typically cs=63 km/s, and so the Mach number of

the SW flow Ms=uSW/cs=468/63=7.4. By contrast, velocity
fluctuations have a mean value u0=10 km/s. Thus for cs0
�cs, the turbulent Mach number Ms0�10/63=0.16	1.
This justifies our assumption of low Mach number. The nor-
malized momentum equation can then be expressed as

��̃SW + �̃��
�ũ�

�t* + ��̃SW + �̃��ũSW · �x
*ũ� + ��̃SW + �̃��ũ� · �x

*ũ�

= −
1


2�x
*p̃� − ��̃�ũSW · �r

*ũSW − ��̃SW + �̃���ũ� · �r
*ũSW,

�12�

and the normalized energy equation as

�p̃�

�t* + �ũSW + ũ�� · �x
*p̃� + ��p̃SW + p̃���x

* · ũ�

= − �ũ� · �r
*p̃SW − ��p̃��r

* · ũSW. �13�

The adiabatic expression for the large scale solar wind p̃SW
= �̃SW

� gives us the useful relation

��̃SW

�̃SW

=
1

�

�p̃SW

p̃SW

, �14�

which will be used below. Equations �10�, �12�, and �13�
describe respectively the normalized fluctuating density, ve-
locity, and the pressure in the solar wind plasma. It is note-
worthy here that the right-hand sides of these equations, due
to the large-scale gradients of the stationary equilibrium solar
flows, behave as sources. These sources therefore disappear
in the absence of flow gradients. Similarly, the dimensionless
parameter � is an important quantity that describes the cou-
pling between the large-scale equilibrium flow and small-
scale turbulence. This parameter therefore emerges naturally
from the terms that contain SW equilibrium gradients in Eqs.
�10�–�13�. The coupling parameter � introduces instabilities
due to free energy associated with various gradients. Typi-
cally, �	1 because the equilibrium flow varies much more
slowly than the fluctuations in the solar wind plasma. In the
limit of negligibly small �, the solar wind plasma is predomi-

nantly composed of a small-scale high-frequency component
and contains no inhomogeneous flows. Such a trivial limit
recovers the basic homogeneous hydrodynamic equations.

A leading-order incompressible description of the solar
wind plasma can also be deduced from Eqs. �10�–�14�, using
the perturbative expansion method developed by Zank and
Matthaeus �4,5�. This method uses a multiple time expansion
technique that distinctively separates fast and slow scales
and is described in detail in the subsequent section.

IV. LOCALLY INCOMPRESSIBLE EQUATIONS

To derive a locally incompressible system of equations
from the normalized, fully compressible system �7�–�9�, we
follow the constructive approach developed by Zank and
Matthaeus �ZM� who applied a procedure developed by Kre-
iss. Kreiss �25� showed that high frequency fluctuations in a
hyperbolic system of equations could be eliminated by as-
suming boundedness of several orders of time derivatives.
Such a procedure has the effect of implying further con-
straints on the system of equations. ZM showed explicitly
that bounding the time derivatives of the compressible hy-
drodynamic equations, according to Kreiss’ �25� principle,
yielded the familiar equations of the incompressible fluid
mechanics. As ZM observed, the physical argument ad-
vanced typically to justify the use of the incompressible fluid
description �e.g., Landau and Lifshitz �26�� is completely
consistent with the mathematical justification, but the latter
provides a framework for deriving leading-order incompress-
ible model systems for more complicated problems of homo-
geneous gas flow �e.g., Zank �27�, Florinski et al. �28��. Be-
cause we allow variation of the density at the lowest order, to
prevent confusion with the term “incompressible,” which
usually means that no density change is allowed, we use the
term “locally incompressible” �LI� instead. The choice of
this term will become more apparent when we introduce a
separation of time and length scales at the end of this section.

Following Zank and Matthaeus, we use Kreiss’ �25� ap-
proach to derive a LI reduction of the compressible hydro-
dynamic equations in the presence of a large-scale back-
ground flow field. In particular, we derive a system of
equations that describe the evolution and coupling of small-
scale �relative to the background inhomogeneity� LI fluctua-
tions to the expanding solar wind �or stellar wind, in gen-
eral�. To derive LI equations, we introduce an ordering
expansion for the fluctuating quantities according to

�̃� = 
��, p̃� = 
p1 + 
2p�, ũ� = u�. �15�

The motivation for choosing this expansion is to separate
different magnitudes in solar wind and fluctuation quantities.
This is done using the small parameter 
. In the leading
order, the total density is composed of a background solar
wind density �SW plus a correction for the small density fluc-
tuation 
��. The magnitude of the fluctuating velocity u� is
assumed to be of similar order as the background solar wind
speed uSW. The expansion in p̃ is very critical and must be
dealt with carefully as it leads to high frequency oscillations
in the momentum equation. Note that p1 appears at an order

, whereas p� because of Kreiss’ principle, at an order 
2.
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The expansion is chosen to be consistent with the earlier ZM
analysis without the solar wind background �4–6�. For now,
we assume that the parameter � is of arbitrary order.

We use Eq. �15� in the normalized equations �10�, �12�,
and �13�, and collect terms of the same order in the small
parameter 
. For simplicity we drop the index x in the nabla
operator and the symbols * ,	. Because 
=�1/2Ms0, the ex-
pansion is only for low turbulent Mach numbers to ensure
that the expansion remains valid and does not lead to non-
physically growing solutions.

Using Kreiss’ principle in the momentum equation �12�
implies that to prevent the acceleration �u�

�t being unbounded,
the term at the order 1


 must be equal to zero. This yields a
constraint

O�1



�: � p1 = 0, �16�

meaning that p1 is constant throughout space and that first
order pressure fluctuations are not present. We can therefor
exclude first order pressure p1 from all expansions and in-
stead of p̃= pSW+
p1+
2p� we will use p̃= pSW+
2p�. The
same conclusion to exclude 
-order pressure fluctuations was
obtained without a large-scale background by Zank and Mat-
thaeus �5� and by Matthaeus and Brown �3�. Matthaeus and
Brown used a different procedure, where time-scale separa-
tion was used �without length-scale separation� directly in
the compressible equations �10�–�13� and a sourceless wave
equation for p1 propagating on fast time scales was obtained.
They argue that if such waves are present and viscous dissi-
pation is reinstated, then they decay through viscous damp-
ing and if the waves are absent in the initial data, they cannot
appear since they have no sources. However, they conclude
that the main reason for the exclusion of p1 pressure varia-
tions is that they would produce unbounded velocity pertur-
bations at vanishing Mach number. To better understand the
nearly incompressible model, we performed a thorough in-
vestigation of what the consequences of a nonvanishing first
order pressure p1 would be. We concluded, that at least in the
hydrodynamics case, the inclusion of p1 creates subsequent
inconsistencies in the nearly incompressible description. For
example, it leads to a problem in defining the leading order
incompressible equations �e.g., in energy equation for p1�,
and also induces an awkward nonphysical singularity in the
generalized pseudosound relation. The procedure used by
Matthaeus and Brown was also checked and a similar
sourceless wave equation was obtained. Without presenting
all the details, we found from a variety of approaches that to
obtain a self-consistent nearly incompressible description,
the exclusion of a leading order pressure p1 is necessary and
it might be considered as a general feature of nearly incom-
pressible hydrodynamics. However, one has to be careful,
because the situation can be much different in the presence
of magnetic fields �Bhattacharjee et al. �17��, and we will
explore this in a subsequent paper, which will be devoted to
magnetohydrodynamics. We summarize the expansion that
we use henceforth,

�̃� = 
��, p̃� = 
2p�, ũ� = u�. �17�

On continuing with the expansion of the momentum equa-
tion and collecting terms at the next order, we obtain

O�
0�: �SW
�u�

�t
+ �SW�uSW + u�� · �u�

= − �p� − ��SWu� · �ruSW. �18�

The form of Eq. �18� resembles the compressible momentum
equation except that �SW is in fact prescribed by the back-
ground flow, and so Eq. �18� is really analogous to the in-
compressible momentum equation instead. From the continu-
ity equation �10�, we have

O�
0�: � · u� = −
�

�SW
u� · �r�SW, �19�

which, after using Eq. �14�, can be rewritten as

O�
0�: � · u� = −
�

�pSW
u� · �rpSW. �20�

On collecting terms of higher order yields a passive scalar
equation with source terms for the O�Ms0� density fluctua-
tions

O�
1�:
���

�t
+ �uSW + u�� · ��� + �� � · u� = − ����r · uSW,

�21�

which corresponds to

O�
1�:
���

�t
+ �uSW + u�� · ���

= ���� 1

�SW
u� · �r�SW − �r · uSW� . �22�

Several interesting points are suggested by Eqs. �19� and
�22�. Unlike the regular incompressible hydrodynamic equa-
tions, the velocity fluctuations are nonsolenoidal and a
source term induced by the background inhomogeneity is
present. The model of Bhattacharjee et al. �17�, assuming a
background large-scale inhomogeneity, does not have the
nonsolenoidal condition �20�. The nonsolenoidal condition,
as we derive below, also introduces an additional source term
into the equation for vorticity �=��u� that arises when
eliminating the pressure contribution for the LI momentum
equation. Unlike regular incompressible hydrodynamics, the
LI density fluctuations are not constant but instead are of
O�Ms0� and respond to the LI flow field u� as a passive
scalar while being generated/driven by the low frequency
coupling of LI fluctuations �u� ,��� to the gradient of the
large-scale flow field. The existence of O�Ms0� density fluc-
tuations is consistent with Bhattacharjee et al., who similarly
found that LI fluctuations, coupling to the large-scale inho-
mogeneous magnetic field, generate O�Ms0� density fluctua-
tions. As they emphasized, the prediction of O�Ms0� density
scalings is a distinguishing feature of the inhomogeneous
model, compared to the homogeneous NI hydrodynamic
model which predicts only O�Ms0

2 � scaling of density fluc-
tuations. Observations of density fluctuations in the SW �Tu
and Marsch �22�, Bavassano and Bruno �29�, Bavassano et
al. �23�� do not appear to show convincingly that they scale
as O�Ms0

2 �, but appear to suggest that there may be a mixture
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of O�Ms0� fluctuations as well. However, deriving the Mach
number scalings for density fluctuations from SW observa-
tions is not unambiguous since the formal expansion is an
asymptotic series.

Expanding the energy equation �13�, we get at the lowest
order

O�
0�: � · u� = −
�

�pSW
u� · �rpSW,

which was already obtained from the continuity equation
�20�. This serves as a check on the consistency of our expan-
sion procedure. At the order O�
1� we do not have any con-
tributions and because we consider this as the last order at
the leading order incompressible description, Eqs. �18�, �19�,
and �22� describe the underlying locally incompressible
equations, which, for convenience, we summarize as

O�
0�: � · u� = −
�

�SW
u� · �r�SW; �23�

O�
0�: �SW
�u�

�t
+ �SW�uSW + u�� · �u�

= − �p� − ��SWu� · �ruSW; �24�

O�
1�:
���

�t
+ �uSW + u�� · ���

= − ��� � · uSW + �
��

�SW
u� · �r�SW. �25�

The solar wind variables uSW, pSW,�SW are regarded as
known, so Eq. �23�–�25� describe the motion of the fluctuat-
ing variables u� ,�� , p� and therefore we have a system of
five equations in five unknowns. To model system �23�–�25�
numerically, one has to begin with the subsystem �23� and
�24� which is a system of four equations in four variables
u� , p� �we can, for example, take the curl of Eq. �24� to
eliminate �p� and solve for u�, together with taking the
divergence of Eq. �24� and solve the Poisson equation for
p��. From the solution of Eqs. �23� and �24�, we can solve
for �� from Eq. �25�. These equations were derived by elimi-
nating of all fast-time scale variation and assuming that the
solar wind background is in an equilibrium, nonevolutionary
state. To eliminate fast-time variation, we of course have to
prescribe initial data which do not contain fast fluctuations.
Small-scale fluctuations and solar wind background compo-
nents are coupled through the parameter �, which is the ratio
of typical lengthscales for small-scale fluctuations �L� and
the large-scale solar wind background �R�, �= L

R . In the case
that large-scale gradients are not present in the solar wind, �
can vanish, and as the limit in this special case we obtain
usual hydrodynamic incompressible equations. In summary,
the locally incompressible model �23�–�25� shows the fol-
lowing.

Large-scale gradients in the solar wind density �pressure�
introduce a nontrivial component of nonsolenoidal velocity
fluctuations.

The nonsolenoidal velocity fluctuations generate signifi-
cant density perturbations at an order O�Ms0�. These density
fluctuations are thus highly subsonic, convected structures
that will be created even if they are absent in the initial data,
which stands in contrast with homogeneous flow.

Locally incompressible velocity, density, and pressure
fields are coupled to and driven by large-scale gradients in
the solar wind, which leads to a rich and dynamically com-
plex evolution of solar wind variables and can have impor-
tant implications for understanding solar wind turbulence.

For deeper insight into the equations, it is useful to intro-
duce convective �slow� and acoustic �fast� times scales


 = t, 
� =
t



Þ

�

�t
=

�

�

+

1




�

�
�
, �26�

and short, respectively, long wavelengths

� = x, � = 
x Þ � = �� + 
��, �27�

and apply these operators to the LI equations �23�–�25�. We
expand the nabla operators that apply to the fluctuations only
and not to the solar wind variables. To emphasize the distinc-
tion, we introduce the superscript “r” to the nabla operator
that applies to the background solar wind, to remind us that it
represents �

�r in the radial direction. We should also note, that
henceforth, we take � to be of order 
.

From Eq. �23�, we obtain

O�
0�: �� · u� = 0, �28�

O�
1�: �� · u� = −
�


�SW
u� · �r�SW, �29�

from Eq. �24�

O�1



�:

�u�

�
�
= 0, �30�

O�
0�: �SW
�u�

�

+ �SW�uSW + u�� · ��u� = − ��p�;

�31�

O�
1�: �SW�uSW + u�� . ��u
� = − ��p

� −
�



�SWu� · �ruSW,

�32�

and from Eqs. �25� or �21�

O�1



�:

���

�
�
= 0, �33�

O�
0�:
���

�

+ �uSW + u�� · ���� = 0, �34�

O�
1�: �uSW + u�� · ���
� + ���� · u� = −

�



���r · uSW.

�35�

In the last equation it is better to retain the term with �� ·u�

rather than use Eq. �29�, because these equations will be used
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to cancel terms in the derivation of the nearly incompressible
equations below. It is interesting to note that Eq. �28� and
�31�, together with Eq. �34�, �all of them of order O�
0�� are
consistent with the phenomenology of a leading order in-
compressible flow, now written for short length scales. This
is the reason why the more appropriate term “locally incom-
pressible equations” was chosen.

Similarly, high frequency motions at this order are also
suppressed �see Eq. �30��. The locally incompressible fluid
motion is thus devoid of high-frequency fluctuations. Equa-
tions �28�–�35� illustrate explicitly that the LI equations
�23�–�25� express variations in the fluctuations on slow �con-
vective� time scales and are independent of acoustic varia-
tions. The multiple spatial-scale expansion also illustrates
that it is the long-wavelength, low-frequency fluctuations
that couple to and are driven by the large-scale �solar wind�
gradient. In the following section, we develop a hierarchy of
fluid equations that possess disparate length and time scales,
and that provide a higher-order correction to the core LI
solutions in the framework of a nearly incompressible theory.

V. NEARLY INCOMPRESSIBLE CORRECTIONS

Consider now the fully compressible equations �10�, �12�,
and �13� and introduce the nearly incompressible �NI� cor-
rections u1 , p* and �2 to the locally incompressible �LI� low
frequency variables u� , p�, and �� according to the expan-
sion

ũ� = u� + 
u1,

p̃� = 
2�p� + p*� ,

�̃� = 
�� + 
2�2. �36�

Note, that in contrast with NI velocity and density correc-
tions, the NI pressure p* is introduced at the same order as
the pressure p�. This is motivated by the earlier homoge-
neous work of Zank and Matthaeus �5,6�, where it was
shown that to obtain correct nearly incompressible equations,
it is necessary to perform the NI expansion in the fashion of
Eq. �36�. This can be justified more formally from the rigor-
ous work of Klainerman and Majda �2� �for example, theo-
rem 2, section “Justification of linearized acoustics,” together
with Sec. III, “The Proof of Theorem 2”�, where they explic-
itly consider �in their slightly different notation� the NI pres-
sure p* to be at the same 
2 order as pressure p�. The justi-
fication for introducing p* at O�
2� arises from the presence
of the second-order density fluctuation. Its fast-scale pres-
ence has to be balanced by a corresponding fast-scale re-
sponse in pressure otherwise the only consistent solution
would be �2=0, and hence no acoustic fluctuations. Thus, to
include acoustic �or equivalently compressible� variations in
the next order we have to introduce a compressible O�
2�
pressure term.

Since, typically in the solar wind, u0	cs0 and 

=�1/2Ms0	1, the expansion is convergent and does not cre-
ate nonphysically growing solutions. In the situation when
Ms0�1, one has to use a fully compressible fluid model that

accounts for both subsonic and supersonic fluid motion, but
this is not of interest here.

The locally incompressible variables explicitly satisfy
Eqs. �23�–�25�. We adopt the same approach used by Zank
and Matthaeus and include the time and wavelength scale
separation �26� and �27�. Consider the normalized momen-
tum equation �12�, which, after using the expansion �36�,
yields at the first order

O�1



�: �SW

�u�

�
�
= 0,

which was already obtained in Eq. �30�. At the next order,

O�
0�: �SW
�u�

�

+ ���u�

�
�
+ �SW

�u1

�
�
+ �SW�uSW + u�� · ��u�

= − ���p� + p*� .

After cancellation of terms due to the LI equations �30� and
�31�, we obtain

O�
0�: �SW
�u1

�
�
= − ��p*. �37�

This is the same equation derived by Zank and Matthaeus
�their Eq. �32�� and evidently, p* is the pressure associated
with nonconvective fluid motions, and Eq. �37� indicates that
short wavelengths are associated with high-frequency acous-
tic fluctuations. Continuing to the next order and using Eqs.
�30� and �32� yields

O�
1�: �SW
�u1

�

+ ���u1

�
�
+ ���u�

�

+ �SW�uSW + u�� · ��u1

+ ���uSW + u�� · ��u� + �SWu1 · ��u� = − ��p
*, �38�

which represents the “linearized” momentum equation. The
linearization is in terms of the highly nonlinear background
variables u� ,��, which are present both as coefficients and
source terms, as are the background prescribed variables
�SW, pSW. Equation �38� is therefore very complicated to
solve, but some insight can be gained into its basic structure
by considering the simplification u�=0. In this case we ob-
tain

�SW
�u1

�

+ ���u1

�
�
+ �SWuSW · ��u1 = − ��p

*, �39�

which is the long wavelength analog of Eq. �37� modified by
additional solar wind terms. On continuing the expansion to
the next order, we obtain

O�
2�: ���u1

�

+ �2

�u�

�

+ �2

�u1

�
�
+ �SW�uSW + u��

· ��u1 + �SWu1 · ���u1 + ��u
�� + ���uSW + u��

· ���u1 + ��u
�� + ��u1 · ��u� + �2�uSW + u�� · ��u�

= −
�



���u� + uSW� · �ruSW −

�



�SWu1 · �ruSW. �40�

For completeness we write down one more order:
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O�
3�: �2
�u1

�

+ ��uSW · ��u1 + �2uSW · ���u

� + ��u1�

+ �SWu1 · ��u1 + ��u� · ��u1 + ��u1 · ���u1 + ��u
��

+ �2u� · ���u1 + ��u
�� + �2u1 · ��u�

= −
�



��u1 · �ruSW −

�



�2�uSW + u�� · �ruSW. �41�

Equations �37�, �38�, �40�, and �41�, all in different orders of

, can be combined and represented as

�SW
�u1

�t
+ ��� + 
�2�

�

�t
�u� + 
u1� + �SW�uSW + u�� · �u1

+ ��� + 
�2�uSW · ��u� + 
u1� + �SWu1 · ��u� + 
u1�

+ ��� + 
�2��u� + 
u1� · ��u� + 
u1�

= −
�p*



− ���� + 
�2�uSW · �ruSW − ��SWu1 · �ruSW

− ���� + 
�2��u� + 
u1� · �ruSW. �42�

At this point, it is worth commenting that reconstructing the
multiple-scales expanded equations �37�–�41� to obtain Eq.
�42� is a tedious procedure. Although the separation of vari-
able into long/short wavelengths and slow/fast time scales
provides insight into the various coupling and source terms,
and clarifies the nature of the NI expansion, this procedure is
not necessary for deriving the final nearly incompressible
model. One can instead expand the compressible equations
using the NI expansion �36� and the locally incompressible
equations �23�–�25� to directly obtain Eq. �42�. Keeping just
the lowest order terms in Eq. �42� yields the inhomogeneous
nearly incompressible momentum equation

�SW
�u1

�t
+ ���u�

�t
+ �SW�uSW + u�� · �u1

+ ���uSW + u�� · �u� + �SWu1 · �u�

= −
1



� p*. �43�

This equation is analogous to that derived by Zank and Mat-
thaeus �their Eq. 36� and it shows how the solar wind and LI
velocity field is coupled to the “acoustic” velocity field, dem-
onstrating how momentum is transfered from the solar wind
and locally incompressible field to the acoustic field. This
can be considered as a generalization of the Lighthill method
for the generation of sound �Lighthill �30��.

Consider now the relationship between Eq. �43� in the
limit of no solar wind, and that published by ZM. For that,
we have to compare the expansions used here and in ZM:

Now: ũ = uSW + u� + 
u1, ZM: ũ = u� + 
u1,

p̃ = pSW + 
2�p� + p*� , p̃ = 1 + 
2�p� + p*� ,

�̃ = �SW + 
�� + 
2�2, �̃ = 1 + 
2�1.

Evidently, from the expansions, the correct limit requires that

uSW → 0 ,

�SW → 1, �� → 0 .

pSW → 1. �44�

Using this limit, Eq. �43� reduces to

�u1

�t
+ u� · �u1 + u1 · �u� = −

1



� p*,

which is exactly the nearly incompressible momentum equa-
tion published by Zank and Matthaeus �in the absence of
viscous terms�.

On using the limit �44�, we can also demonstrate that the
locally incompressible equations �23� and �24�, reduce to the
usual incompressible equations

� · u� = 0,

�u�

�t
+ u� · �u� = − �p�,

together with �25�, which reduces to D�� /Dt=0.
Consider now the energy equation �13�, and let us reverse

the procedure developed above and first derive the NI equa-
tions before introducing multiple scales. Doing the nearly
incompressible expansion �36� of the energy equation �13�
yields


2 �

�t
�p� + p*� + 
2�uSW + u�� · ��p� + p*� + 
3u1 · ��p� + p*�

+ �pSW � · u� + 
2��p� + p*� � · u� + 
�pSW � · u1

+ 
3��p� + p*� � · u1

= − �u� · �rpSW − �
u1 · �rpSW

− ��
2�p� + p*��r · uSW.

After using the LI equation �20�, dividing by 
2, and taking
just the lowest order terms in 
 �remember � ·u�	O����
gives

�

�t
�p� + p*� + �uSW + u�� · ��p� + p*� +

1



�pSW � · u1

= −
�



u1 · �rpSW. �45�

This is the inhomogeneous nearly incompressible energy
equation in the presence of a large-scale solar wind back-
ground. In the absence of the background solar wind, the
nearly incompressible equation �45�, using the limit �44�,
reduces to

�

�t
�p� + p*� + u� · ��p� + p*� +

1



� � · u1 = 0, �46�

which is the same equation given by Zank and Matthaeus
�ZM, their Eq. �44��.

Consider now the corresponding multiple-scale expansion
of the energy equation. We obtain at the first order
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O�
0�: �pSW�� · u� = 0,

which is in agreement with Eq. �28�. Continuing to higher
order

O�
1�:
�

�
�
�p� + p*� + �pSW��� · u� + �� · u1�

= −
�



u� · �rpSW,

and recalling that p� is independent of the fast time scale 
�,
together with suitable cancellations �28� and �29�, leads to

O�
1�:
�p*

�
�
+ �pSW�� · u1 = 0. �47�

This equation is analogous to ZM equation �their Eq. �37��.
After combining Eqs. �37� and �47�, recalling that the solar
wind variables are time independent and making the reason-
able assumption that they do not depend also on short wave-
lengths ���pSW=0,���SW=0�, we obtain

�2p*

�
�2 −
�pSW

�SW
��

2 p* = 0,

�2u1

�
�2 −
�pSW

�SW
��

2u1 = 0. �48�

These equations correspond to wave equations for the pres-
sure and velocity perturbations p* and u1 on the fast time/
short wavelength scales. Because

�pSW

�SW
=cs

2, these waves or
perturbations propagate at the sound speed defined in terms
of the inhomogeneous background state �pSW,�SW�. How-
ever, since the background sound speed is independent of the
fast time, short wavelength variables 
� ,�, Eqs. �48� remain
nonetheless homogeneous wave equations, at this order. On
the other hand, the sound speed cs is spatially inhomoge-
neous and governed by the large-scale solar wind equilib-
rium. In the analogous ZM equations, the normalized pres-
sure and density is proportional to one. The speed of sound
in their equations is therefore “hidden” and constant. For
completeness, we note that even though the wave equations
�48� are sourceless, there is no reason to exclude fluctuations
in p* and u1 from initial data, since they produce only
bounded acceleration as 
→0 �which is in contrast with p1
as was discussed in Sec. IV�, and agrees with Matthaeus and
Brown �3�. Continuing the expansion of Eq. �13� to higher
orders and using Eq. �28� gives

O�
2�:
�

�

�p� + p*� + �uSW + u�� · ���p� + p*�

+ �pSW�� · u1 = −
�



u1 · �rpSW. �49�

This equation describes the evolution of acoustic energy on
slow time scales, and individual terms illustrate how the
acoustic pressure p* is driven by short and long wavelength
velocity fluctuations and the background solar wind. Explor-
ing the special case when u�=0, which implies that p� can at
best be constant, reduces Eq. �49� to

�p*

�

+ uSW · ��p* + �pSW�� · u1 = −

�



u1 · �rpSW.

One can in principle couple this equation to Eqs. �39� and
�47� to obtain slow time/long wavelength wave equations for
quantities p* and u1 �similar to ZM, their Eq. �40��, but be-
cause of the complicated solar wind terms, this does not
yield anything tractable. The higher-order expansion is given
by

O�
3�: �uSW + u�� · ���p� + p*� + u1 · ���p� + p*� + ��p�

+ p*���� · u1 + �� · u�� = − �
�



�p� + p*��r · uSW.

�50�

Coupling equations �47�, �49�, and �50�, one can, at the low-
est order, obtain again the nearly incompressible energy
equation �45�.

Finally, we can derive the nearly incompressible continu-
ity equation. From Eq. �10�, we find



���

�t
+ 
2��2

�t
+ 
�� � · u� + 
2�2 � · u� + 
2���

+ 
�2� � · u1 + 
�uSW + u�� · ��� + 
2u1 · ��� + 
2�uSW

+ u�� · ��2 + 
3u1 · ��2 + �SW � · u� + 
�SW � · u1

= − �
���r · uSW − �
2�2�r · uSW − �u� · �r�SW

− �
u1 · �r�SW.

As before, using locally incompressible equations �23� and
�25�, and dividing by 
2 yields

��2

�t
+ �uSW + u�� · ��2 + �2 � · u� + �� � · u1 + 
�2 � · u1

+ u1 · ��� + 
u1 · ��2 +
1



�SW � · u1

= −
�



u1 · �r�SW − ��2�r · uSW. �51�

Retaining the lowest order terms, we obtain the inhomoge-
neous nearly incompressible continuity equation, including
the solar wind background, as

��2

�t
+ �� � · u1 + u1 · ��� + �uSW + u�� · ��2

= −
1



�SW � · u1 −

�



u1 · �r�SW. �52�

We may verify that the NI continuity equation �52� reduces,
in the no solar wind limit �44�, to

��2

�t
+ u� · ��2 +

1



� · u1 = 0,

which is exactly the nearly incompressible continuity equa-
tion published in Zank and Matthaeus �their Eq. 51�.

We may proceed as before using multiple scales time and
wavelength expansion �26� and �27�, together with NI expan-
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sion �36� for the continuity equation �13�. At the first order,
we find

O�
0�:
���

�
�
+ �SW�� · u� = 0,

and both terms independently go to zero. A further expansion
yields

O�
1�:
��2

�
�
+ �SW�� · u1 = 0, �53�

while at higher orders, we have

O�
2�:
��2

�

+ �uSW + u�� · ���2 + ���� · u1 + u1 · ����

+ �SW�� · u1 = −
�



u1 · �r�SW, �54�

O�
3�: uSW · ���2 + ���� · u1 + �2�� · u1 + �2�� · u�

+ u1 · ���
� + u1 · ���2 + u� · ���2 = −

�



�2�r · uSW.

�55�

On reconstituting Eqs. �53�–�55�, we recover at the lowest
order, the nearly incompressible equation of continuity Eq.
�52�.

VI. GENERALIZED PSEUDOSOUND RELATION

In an adiabatically compressive fluid, the pressure and
density variations can be related through the sound speed.
Such a relationship, in our present analysis, can be deduced
readily by combining Eqs. �53� and �47� as follows,

�p*

�
�
= �

pSW

�SW

��2

�
�
. �56�

The above equation is slightly different from the one ob-
tained in ZM �their Eq. �48�� for an isotropic and homoge-
neous fluid, and because solar wind quantities are time inde-
pendent, it does conveniently lead to a linear relationship
between the fluctuations �2 and p*

p* = cs�r�2�2, where cs�r�2 = �
pSW

�SW
,

implying that the fluctuations propagate with the speed of
sound. This is valid both for normalized or non-normalized
quantities p* and �2 as the solar wind pSW and �SW are nor-
malized with respect to the same p0,�0.

This is the basis of the pseudosound approximation, used
to relate density and pressure fluctuations. The sound speed
is, however, in fact determined by the large-scale motion.
This is fundamentally different from ZM inference that cs
was constant in the wave equation and determined by the
normalizing quantities. Because the locally incompressible
pressure p� does not depend on the fast-time scales 
�, we

can add the pressure p� under � /�
� in Eq. �56� to obtain a
generalized relation for fast-time/short-wavelength scales

p� + p* = cs�r�2�2. �57�

It is to be born in mind that Eq. �57� is slightly different for
this inhomogeneous case however, in that it possesses the
sound speed cs�r�2 instead of cs0

2 . The latter, as obtained by
ZM, is determined by the normalizing p0, �0 and is therefore
held constant, whereas the former �i.e., cs

2� depends upon the
local large-scale solar wind background density and pressure
gradients. The inhomogeneous sound speed thus varies lo-
cally and its dependence can be estimated as follows. Let us
assume that uSW is a constant and is described by a mean
flow speed. It then follows from the continuity equation that
the density scales as �SW	1/r2. The solar wind, being an
adiabatic fluid, obeys the adiabatic pSW=�SW

� relationship.
This gives us pSW	1/r2� and finally cs�r�	1/r�−1.

To derive a similar relation for the slow-time/long-
wavelength scales is more complicated. On using a similar
construction as in ZM �5�, the term proportional to �� ·u1 in
the acoustic energy equation �49� is eliminated by using Eqs.
�54� and �14�, and rewritten as

�

�

�p� + p*� + �uSW + u�� · ���p� + p*�

− cs
2��2

�

− cs

2�uSW + u�� · ���2 − cs
2���� · u1

− cs
2u1 · ���� = 0, �58�

This is too complicated to deduce a simple form such as Eq.
�57�. The coupling between the large-scale solar wind non-
evolutionary equilibrium and the turbulent fluctuations is pri-
marily responsible for the complexities of Eq. �58�. How-
ever, two cases allow for a simple analytic understanding of
Eq. �58�.

A. Case I: No solar wind background

Let us assume that there exists no large-scale solar wind
background. According to the limit Eq. �44�, we can elimi-
nate �� and Eq. �58� then yields

�

�

�p� + p*� + u� · ���p� + p*� − cs0

2 ��2

�

− cs0

2 u� · ���2 = 0,

�59�

which converges to the expression p�+ p*=cs0
2 �2, which is

identical to that obtained in ZM in the limit cs�r�→cs0. How-
ever, when the solar wind background is present, it is ana-
lytically intractable to deduce a generalized pseudosound re-
lation in the presence of large-scale SW background source
terms. For this reason, a simple pseudosound relation cannot
be obtained and Eq. �58� represents an implicit relationship
between p�, p*, and �2.

B. Case II: Background solar wind pressure

In this case we continue to work with full Eq. �58� with-
out any specific assumptions. As can be seen, the linear pseu-
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dosound relationship, p�+ p*=cs
2�2, still satisfies the homo-

geneous part �59� of inhomogeneous Eq. �58�. To obtain a
generalized pseudosound relation �at least at the lowest or-
der�, we then seek a modification to the homogeneous part
by substituting the linear relationship into Eq. �58�. This
yields

− cs
2���� · u1 = cs

2u1 · ����. �60�

On using Eq. �47� we obtain

�p*

�
�
=

�pSW

�� u1 · ����.

Because �� �together with pSW, �SW, and cs
2� does not depend

on the fast time 
�, whereas u1 does, it yields the following
expression for the “acoustic pressure”

p* =
�pSW

�� 
 u1 · ����d
�.

Note that p* in the above expression serves only as a modi-
fication to its homogeneous counterpart. A generalized form
of the acoustic component can then be written as

P* = p* +
�pSW

�� 
 u1 · ����d
�. �61�

A generalized inhomogeneous pseudosound relation can then
be expressed in a familiar form as

p� + P* = cs
2�2. �62�

Several interesting points emerge from this analysis. Com-
pared to Zank and Matthaeus �5�, the existence of the non-
linear part of the pseudosound relation is not directly due to
solar wind background gradients �they are not present in Eq.
�58��, but rather due to the inclusion of 
-order terms in the
expansion of density fluctuations �namely ���. Were �� not
included in the expansions �36� and �17�, of the nearly in-
compressible model �ZM case�, the last two terms in Eq. �58�
would vanish and we would obtain only the usual pseudo-
sound relation without the inhomogeneous part. However, as
implied by Sec. IV, to self-consistently include solar wind
background into the NI theory, the 
-order terms have to be
included also. Therefore, the inhomogeneous part of the
pseudosound relation �62� is due to the inclusion of the solar
wind background, although indirectly.

For completeness �and demonstration of consistency of
nearly incompressible theory� we note, that a similar form of
the generalized inhomogeneous pseudosound relation can be
derived, when in Eq. �60� we eliminate �� ·u1 by using Eq.
�53�. The pseudosound relation then can be written as

p� + p* = cs
2�2, �63�

where

�2 = �2 +
�SW

�� 
 u1 · ����d
�. �64�

This relation is of course consistent with Eq. �62�, because
the sound speed cs

2=�pSW/�SW, so the constants in front of
the integrals are the same. The apparent inconsistency in sign
has a very natural explanation. Both solutions are correct,
since Eq. �58�, being of second order, has two solutions. The
two solutions represent backward and forward propagating
waves with respect to the solar wind background. For a per-
turbation propagating in a direction opposite to the back-
ground gradient, we must observe increase of pressure and
density and for a perturbation propagating in the same direc-
tion as the background gradient, we must observe a decrease.
For that reason the pseudosound relation is written correctly
with both signs as

p� + p* ±
�pSW

�� 
 u1 · ����d
� = cs
2�2. �65�

VII. CONCLUSIONS

The main result of this paper is the derivation of a locally
incompressible and nearly incompressible system of hydro-
dynamics equations in the presence of a large-scale inhomo-
geneous solar wind background �radially symmetric and in
equilibrium�. The theory was developed in the purly hydro-
dynamics regime under the assumption of low turbulent
Mach number. The inclusion of large-scale inhomogeneities
to nearly incompressible theory leads to several new analyti-
cal results, and we summarize them as follows.

�1� The presence of large-scale inhomogeneities modifies
the leading-order incompressible description of solar wind,
and is unlike the regular incompressible equations. For ex-
ample, the divergence of the velocity fluctuations is nonso-
lenoidal and proportional to the large-scale gradients in solar
wind. Large-scale gradients act as source terms and are re-
sponsible for inducing density fluctuations. On short-length
scales, the system of equations in the leading-order incom-
pressible description converge to the “usual” incompressible
equations and therefore the term “locally incompressible”
was introduced.

�2� The density fluctuations scale linearly with the Mach
number O�Ms0�, unlike the quadratic Mach number scaling
O�Ms0

2 � of the homogeneous nearly incompressible theory of
Zank and Matthaeus. This is consistent with Bhattacharjee et
al. �17�, who also found that O�Ms0� density fluctuations are
generated as a result of coupling to the large-scale inhomo-
geneous magnetic field. We suggest that the linear Mach
number scaling in density fluctuations is a typical feature of
nearly incompressible inhomogeneous models.

�3� The special case, for which no large-scale inhomoge-
neous solar wind background flow is present, was considered
and we showed, that both the locally incompressible and
nearly incompressible equations converged to their corre-
sponding homogeneous counterparts.
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�4� Wave equations for the acoustic pressure �p*� and ve-
locity fluctuations �u1� propagating at the fast-time–short-
wavelength scales with the sound speed cs were derived. Un-
like the regular homogeneous case, the speed of propagation
varies spatially and depends on the solar wind background
parameters �cs

2�r�=�pSW/�SW�.
�5� For fast-time scales �high frequencies�, the pseudo-

sound relation p�+ p*=cs
2�2 relating density and pressure

fluctuations was derived analytically, where again in contrast
with the homogeneous case, the sound speed cs

2 varies spa-
tially.

�6� For slow-time scales �low frequencies�, an implicit
relationship between p�, p*, and �2 was derived and �at least
at the lowest order� a generalized inhomogeneous pseudo-
sound relation was obtained.

�7� An important outcome of this paper is that in under-
standing the physical meaning of expansion variables at dif-
ferent orders in 
, the validity of the sonic Mach number
�
=�1/2Ms0� expansion of the fluid variables was clarified.
For example, when p�=
p1+
2�p�+ p*�, ��=
��+
2�2, u�
=u�+
u1, we found that the lowest order pressure p1 must
be excluded because it generates unbounded velocity oscil-
lations. The pressure, density and velocity p�, ��, u� vary
only on slow-time scales and satisfy the locally incompress-
ible equations. The higher order components p*, �2, u1 vary
on both fast and slow-time scales and satisfy the nearly in-
compressible equations. The acoustic pressure p* and veloc-
ity u1 are waves propagating with the sound speed, and p�,
p*, �2 are related through the pseudosound relation. Without
the inclusion of the large-scale inhomogeneous solar wind
background, the 
-order term in density ���� does not have to
be included in the expansion series �unless we wish to in-
clude other effects such as heat conduction� as was done by
Zank and Matthaeus.

Inclusion of heat conduction, together with the generali-
zation of the inhomogeneous nearly incompressible theory to
magnetohydrodynamics are under development and will be
the topic of a subsequent paper. Extensive numerical simu-
lations of the analytical results will also be addressed.
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APPENDIX

For convenience, we summarize the nearly incompress-
ible equations in the presence of large scale solar wind inho-
mogeneities as follows.

1. Nearly incompressible (normalized)

Continuity:

��2

�t
+ �� � · u1 + u1 · ��� + �uSW + u�� · ��2

= −
1



�SW � · u1 −

�



u1 · �r�SW. �A1�

Momentum:

�SW
�u1

�t
+ ���u�

�t
+ �SW�uSW + u�� · �u1

+ ���uSW + u�� · �u� + �SWu1 · �u� = −
1



� p*.

�A2�

Energy equation:

�

�t
�p� + p*� + �uSW + u�� · ��p� + p*� +

1



�pSW � · u1

= −
�



u1 · �rpSW. �A3�

It is useful to write down the nearly incompressible and lo-
cally incompressible equations with large scale inhomogene-
ities �solar wind background� in a non-normalized form.

2. Nearly incompressible (non-normalized)

Continuity:

��2

�t
+ �� � · u1 + u1 · ��� + �uSW + u�� · ��2

= −
1

�1/2Ms0
�SW � · u1 −

1

�1/2Mso
u1 · �r�SW. �A4�

Momentum:

�SW
�u1

�t
+ ���u�

�t
+ �SW�uSW + u�� · �u1 + ���uSW

+ u�� · �u� + �SWu1 · �u� = − �1/2Ms0 � p*. �A5�

Energy:

�

�t
�p� + p*� + �uSW + u�� · ��p� + p*� +

�1/2

Ms0
pSW � · u1

= −
1

�1/2Ms0
u1 · �rpSW. �A6�

The non-normalized expansion for the fluctuating quantities
is the same as Eq. �37�. Note, that the coefficient
�1/2pSW/Ms0 in front of � ·u1 in the energy equation can be
rewritten as �SWcs

2 / ��1/2Ms0� which, in the absence of a solar
wind background, becomes �0cs0

2 / ��1/2Ms0�; this differs from
ZM in their final non-normalized energy equation, who erro-
neously had �3/2.
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3. Locally incompressible (non-normalized)

� · u� = −
1

�SW
u� · �r�SW, �A7�

�SW
�u�

�t
+ �SW�uSW + u�� · �u� = − �Ms0

2 � p�

− �SWu� · �ruSW; �A8�

���

�t
+ �uSW + u�� · ��� = − ���r · uSW +

��

�SW
u� · �r�SW.

�A9�

4. ZANK and MATTHAEUS nearly incompressible
(non-normalized)

��2

�t
+ u� · ��2 +

�0

�1/2Ms
� · u1 = 0, �A10�

�u1

�t
+ u� · �u1 + u1 · �u� = −

�1/2Ms

�0
� p*, �A11�

�

�t
�p� + p*� + u� · ��p� + p*� +

�0cs
2

�1/2Ms
� · u1 = 0.

�A12�
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